Jumat, 22 November 2013

Sel Volta


Sel Galvani atau disebut juga dengan sel volta adalah sel elektrokimia yang dapat menyebabkan terjadinya energi listrik dari suatu reaksi redoks yang spontan. reaksi redoks spontan yang dapat mengakibatkan terjadinya energi listrik ini ditemukan oleh Luigi Galvani dan Alessandro Guiseppe Volta.
Sel Volta adalah rangkaian sel yang dapat menghasilkan arus listrik. Dalam sel tersebut terjadi perubahan dari reaksi redoks menghasilkan arus listrik.
Sel volta terdiri atas elektroda tempat berlangsungnya reaksi oksidasi disebut anoda(electrode negative), dan tempat berlangsungnya reaksi reduksi disebut katoda(electrode positif).
Rangkaian Sel Galvani
http://upload.wikimedia.org/wikipedia/id/c/c7/Sel_galvani.jpg
Contoh rangkaian sel galvani.
sel galvani terdiri dari beberapa bagian, yaitu:
  1. voltmeter, untuk menentukan besarnya potensial sel.
  2. jembatan garam (salt bridge), untuk menjaga kenetralan muatan listrik pada larutan.
  3. anoda, elektroda negatif, tempat terjadinya reaksi oksidasi. pada gambar, yang bertindak sebagai anoda adalah elektroda Zn/seng (zink electrode).
  4. katoda, elektroda positif, tempat terjadinya reaksi reduksi. pada gambar, yang bertindak sebagai katoda adalah elektroda Cu/tembaga (copper electrode).
Proses dalam Sel Galvani
Pada anoda, logam Zn melepaskan elektron dan menjadi Zn2+ yang larut.
Zn(s) → Zn2+(aq) + 2e-
Pada katoda, ion Cu2+ menangkap elektron dan mengendap menjadi logam Cu.
Cu2+(aq) + 2e- → Cu(s)
hal ini dapat diketahui dari berkurangnya massa logam Zn setelah reksi, sedangkan massa logam Cu bertambah. Reaksi total yang terjadi pada sel galvani adalah:
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
Sel Volta dalam kehidupan sehari – hari :
1. Sel Kering (Sel Leclanche)
http://esdikimia.files.wordpress.com/2011/09/images.jpg?w=103Dikenal sebagai batu baterai. Terdiri dari katode yang berasal dari karbon(grafit) dan anode logam zink. Elektrolit yang dipakai berupa pasta campuran MnO2, serbuk karbon dan NH4Cl.
Persamaan reaksinya :
Katode : 2MnO2 + 2H+ + 2e ” Mn2O3 + H2O
Anode : Zn ” Zn2+ + 2e
Reaksi sel : 2MnO2 + 2H+ + Zn ” Mn2O3 + H2O + Zn2
2. Sel Aki
http://esdikimia.files.wordpress.com/2011/09/hal-6.png?w=250Sel aki disebut juga sebagai sel penyimpan, karena dapat berfungsi penyimpan listrik dan pada setiap saat dapat dikeluarkan . Anodenya terbuat dari logam timbal (Pb) dan katodenya terbuat dari logam timbal yang dilapisi PbO2.Reaksi penggunaan aki :
Anode : Pb + SO4 2- ” PbSO4 + 2e
Katode : PbO2 + SO42-+ 4H++ 2e ” PbSO4 + 2H2O
Reaksi sel : Pb + 2SO4 2- + PbO2 + 4H+ ” 2PbSO4 + 2H2O
Reaksi Pengisian aki :
2PbSO4 + 2H2O ” Pb + 2SO4 2- + PbO2 + 4H+
3. Sel Perak Oksida
Sel ini banyak digunakan untuk alroji, kalkulator dan alat elektronik.
Reaksi yang terjadi :
Anoda : Zn(s) + 2OH-(l) ” Zn(OH)2(s) + 2e
Katoda : Ag2O(s) + H2O(l) + 2e ” 2Ag(s) + 2OH-(aq)
Reaksi Sel : Zn(s) + Ag2O(s) + H2O(l) ” Zn(OH)2(s) + 2Ag(s)
Potensial sel yang dihasilkan adalah 1,34 V
4. Sel Nikel Cadmium (Nikad)
Sel Nikad merupakan sel kering yang dapat diisi kembali (rechargable). Anodenya terbuat dari Cd dan katodenya berupa Ni2O3 (pasta). Beda potensial yang dihasilkan sebesar 1,29 V. Reaksinya dapat balik :
NiO(OH).xH2O + Cd + 2H2O → 2Ni(OH)2.yH2O + Cd(OH)2
5. Sel Bahan Bakar
Sel Bahan bakar merupakan sel Galvani dengan pereaksi – pereaksinya (oksigen dan hidrogen) dialirkan secara kontinyu ke dalam elektrode berpori. Sel ini terdiri atas anode dari nikel, katode dari nikel oksida dan elektrolit KOH.
Reaksi yang terjadi :
Anode : 2H2(g) + 4OH-(aq) → 4H2O(l) + 4e
Katode : O2(g) + 2H2O(l) + 4e → 4OH-(aq)
Reaksi sel : 2H2(g) + O2 → 2H2O(l)



SEL ELEKTROKIMIA

gambar_9_3
Elektrokimia : Hubungan Reaksi kimia dengan daya gerak listrik (aliran elektron)
  • Reaksi kimia menghasil- kan daya gerak listrik (sel galvani)
  • Daya gerak listrik menghasilkan reaksi kimia (sel elektrolisa)
Sel elektrokimia : sistem yang terdiri dari elektroda yang tercelup pada larutan elektrolit.
  1. Sel Volta/Gavalni
gambar_9_4a.    Prinsip-prinsip sel volta atau sel galvani :
  • Gerakan elektron dalam sirkuit eksternal akibat adanya reaksi redoks.
  • Aturan sel volta :
-   Terjadi perubahan : energi kimia → energi listrik
-   Pada anoda, elektron adalah produk dari reaksi oksidasi; anoda kutub negatif
-   Pada katoda, elektron adalah reaktan dari reaksi reduksi; katoda = kutub positif
-   Elektron mengalir dari anoda ke katoda
b.   Konsep-konsep Sel Volta
Sel Volta:
  1. Deret Volta/Nerst
a.   Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Fe Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au
b.  Makin ke kanan, mudah direduksi dan sukar dioksidasi. Makin ke kiri, mudah dioksidasi, makin aktif, dan sukar direduksi.
Prinsip:
  1. Anoda terjadi reaksi oksidasi ; katoda terjadi reaksi reduksi
  2. Arus elektron : anoda → katoda ; arus listrik : katoda → anoda
  3. Jembatan garam : menyetimbangkan ion-ion dalam larutan
Contoh dari sel galvani :
gambar_9_5
Notasi sel :  Zn/Zn+2//Cu+2/Cu
/  = potensial ½ sel
// = potensial sambungan Sel (cell junction potential; jembatan garam)
c.  Macam-macam sel volta
gamba_9_6
  1. Sel Kering atau Sel Leclance
  • Sel ini sering dipakai untuk radio, tape, senter, mainan anak-anak, dll.
  • Katodanya sebagai terminal positif terdiri atas karbon (dalam bentuk grafit) yang terlindungi oleh pasta karbon, MnO2 dan NH4Cl2
  • Anodanya adalah lapisan luar yang terbuat dari seng dan muncul dibagian bawah baterai sebagai terminal negatif.
  • Elektrolit : Campuran berupa pasta : MnO2 + NH4Cl + sedikit Air
  • Reaksi anoda adalah oksidasi dari seng
Zn(s) → Zn2+ (aq) + 2e-
  • Reaksi katodanya berlangsung lebih rumit dan suatu campuran hasil akan terbentuk. Salah satu reaksi yang paling penting adalah :
2MnO2(s) + 2NH4 + (aq) + 2e- → Mn2O3(s) + 2NH3(aq) + H2O
  • Amonia yang terjadi pada katoda akan bereaksi dengan Zn2+ yang dihasilkan pada anoda dan  membentuk ion
Zn(NH3)42+.
2.  Sel Aki
  • Katoda: PbO2
  • Anoda : Pb
  • Elektrolit: Larutan H2SO4
  • Reaksinya adalah :
PbO2(s) + 4H+(aq) + SO42-(aq) → PbSO4(s) + 2H2O (katoda) Pb (s) + SO42-(aq) → PbSO4(s) + 2e- (anoda) PbO2(s) + Pb (s) + 4H+(aq) + 2SO42-(aq) → 2PbSO4(s) + 2H2O (total)
  • Pada saat selnya berfungsi, konsentrasi asam sulfat akan berkurang karena ia terlibat dalam reaksi tersebut.
  • Keuntungan dari baterai jenis ini adalah bahwa ia dapat diisi ulang (recharge) dengan memberinya tegangan dari sumber luar melalui proses elektrolisis, dengan reaksi :
2PbSO4(s)  + 2H2O → PbO2(s) + Pb(s) + 4H+(aq) + 2SO42-(aq) (total)
  • Kerugian dari baterai jenis ini adalah, secara bentuk, ia terlalu berat dan lagi ia mengandung asam sulfat yang dapat saja tercecer ketika dipindah-pindahkan.
3.  Sel Bahan Bakar
  • Elektroda : Ni
  • Elektrolit : Larutan KOH
  • Bahan Bakar : H2 dan O2
4.  Baterai Ni – Cd
  • Disebut juga baterai ni-cad yang dapat diisi ulang muatannya dan yang umum dipakai pada alat-alat elektronik peka. Potensialnya adalah 1,4 Volt.
  • Katoda : NiO2 dengan sedikit air
  • Anoda : Cd
  • Reaksinya :
Cd(s) + 2OH- (aq) → Cd(OH)2(s) + 2e-
2e- + NiO2(s) + 2H2O → Ni(OH)2(s) + 2OH-(aq)
  • Baterai ini lebih mahal dari baterai biasa.




Sel Volta Komersial
Ditulis oleh Zulfikar pada 01-06-2010
Aki atau accumulator merupakan sel volta yang tersusun atas elektroda Pb dan PbO, dalam larutan asam sulfat yang berfungsi sebagai elektrolit. Pada aki, sel disusun dalam beberapa pasang dan setiap pasang menghasilkan 2 Volt.
Aki umumnya kita temui memiliki potensial sebesar 6 Volt (kecil) sebagai sumber arus sepeda motor dan 12 V (besar) untuk mobil. Aki merupakan sel yang dapat diisi kembali, sehingga aki dapat dipergunakan secara terus menerus. Sehingga ada dua mekanisme reaksi yang terjadi. Reaksi penggunaan aki merupakan sel volta, dan reaksi pengisian menggunakan arus listrik dari luar seperti peristiwa elektrolisa. Mekanisme reaksi ditampilkan pada Bagan reaksi 7.9.
bagan 7.9
Bagan 7.9. Reaksi penggunaan dan pengisian aki
Batere atau sel kering merupakan salah satu sel volta, yaitu sel yang menghasilkan arus listrik, berbeda dengan aki, batere tidak dapat diisi kembali.
Sehingga batere juga disebut dengan sel primer dan aki dikenal dengan sel sekunder.
Batere disusun oleh Seng sebagai anoda, dan grafit dalam elektrolit MnO2, NH4Cl dan air bertindak sebagai katoda (lihat Gambar 7.10). Reaksi yang terjadi pada sel kering adalah :
artikel 26
gambar 7.10
Gambar 7.10. Model sel Kering komersial
Sel bahan bakar merupakan bagian dari sel volta yang mirip dengan aki atau batere, dimana bahan bakarnya diisi secara terus menerus, sehingga dapat dipergunakan secara terus menerus juga.
Bahan baku dari sel bahan bakar adalah gas hidrogen dan oksigen, sel ini digunakan dalam pesawat ruang angkasa, reaksi yang terjadi pada sel bahan bakar adalah :
artikel 27



Sel Volta (Sel Galvani)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhboRQi-e2MMB1MitEhLkJR6hCnZ9hp497JJZIUBc3YHflULMD5WJWPwuiApYu5mVPk9a_H7NWjC8YIhglFlqEUcWsKJdEzLEYo4wxbXxq7qYGIX5u9uBXzII5Z-lp8_hugfcIzqBCm1Ahu/s1600/blog01.jpg


Sel volta merupakan alat untuk menghasilkan arus listrik dengan bantuan reaksi kimia. Dalam sel volta, oksidasi terjadi di salah satu elektroda, dan reduksi berlangsung di elektroda lainnya. Elektron akan bermigrasi dari satu elektroda ke elektroda lainnya akibatnya akan dihasilkan listrik yang berlawanan dengan aliran elektron.

a. Struktur Sel Volta 
Bila Anda celupkan dua logam dengan kecenderungan ionisasi yang berbeda dalam larutan elektrolit dan menghubungkan kedua elektroda dengan kawat, sebuah sel volta akan tersusun. Pertama, logam dengan kecenderungan ionisasi yang lebih besar akan teroksidasi, menghasilkan kation yang terlarut dalam larutan elektrolit. Kemudian elektron yang dihasilkan akan bermigrasi ke logam dengan kecenderungan ionisasi lebih rendah melalui kawat. Pada logam dengan kecenderungan ionisasi lebih rendah, kation  yang terlarut dalam larutan elektrolit akan direduksi dengan adanya elektron yang mengalir ke logam tersebut.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjlB_CpOBHF8vdE11XzQOdcHe5GGCVsNLyRiCyckFuB_a0dkKvGg45ALubGHRYIKUJYATKNn0722tOw5F13NimJuMrpFnmKv496CxePxQ-BU13rlw25Eh7ZMe8qs18xcRxFTGwSwzKvIO_I/s1600/kimia01.png

Dalam gambar diagram skematik sel volta di atas terlihat arah arus listrik berlawanan dengan aliran elektron, jadi arus listrik mengalir dari logam yang kecenderungan ionisasinya lebih rendah ke logam yang kecenderungan ionisasinya lebih tinggi. Kemudian yang perlu dipahami disini bahwa kation yang dihasilkan dari reaksi pada elektroda negatif (oksidasi) berbeda dengan kation yang bereaksi pada elektroda positif (reduksi). Untuk lebih jelasnya perhatikan percobaan berikut ini :

Baterai Jeruk
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgyPi3Ro-rcMt_3Ejd4u03-TsXP-NFhDumZ5EoDTZYGcYu08sCZBihJgayR3Up6gAhNK3VvIC2kdtXRbBDvPf_DM0sWl6RHSpQNJJ-UIVW_R9tqxupwNNNsI-MdE8AX8j1XCbCsOqAj9fx-/s1600/kimia02.png
Elektroda negatif/anoda : Logam Zn
Elektroda positif/katoda : Logam Cu
Larutan elektrolit : asam jeruk (H+)

penggunaan Zn sebagai anoda karena kecenderungan ionisasi Zn lebih tinggi dari H dan Cu sebagai anoda karena kecenderungan ionisasi Cu lebih rendah dari H sehingga pada anoda logam Zn dioksidasi menghasilkan ion Zn2+ dan melepas elektron.

Zn → Zn2+ + 2 e-

pada katoda ion H+ yang dihasilkan dari larutan asam jeruk direduksi menjadi molekul hidrogen.

2H+ + 2e- → H2

 

b. Sel Daniel
Mekanisme sel yang paling populer ditemukan oleh kimiawan Inggris John Frederic Daniell (1790-1845) disebut sel daniel. Dalam sel daniell, dua elektroda logam dicelupkan dalam larutan logam sulfatnya. Elektroda negatif (anoda) terdiri atas zink (Zn) dan larutan zink sulfat  (ZnSO4) dan elektroda positifnya (katoda) terdiri atas tembaga (Cu) dan larutan tembaga sulfat (CuSO4). Kedua elektroda ini biasanya ditandai sebagai Zn/ZnSO4(aq) dan Cu/CuSO4(aq). Kadang simbol tersebut disederhanakan menjadi Zn/Zn2+ ,dan  Cu/Cu2+.Sekat berpori digunakan untuk memisahkan kedua larutan (ZnSO4  dan CuSO4) dan pada saat yang sama memungkinkan kation (Zn2+) bermigrasi dari elektroda negatif ke elektroda positif dan anion  (SO4-2) bermigrasi dari elektroda positif ke elektroda negatif.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj7JRPk_DmMEgeQ6U4W2_9wP7K9ivdZr_7XHr4B1XI8AJiKpPxz45NTrET5PRtwLdhCy2vMZM5Zd1juZp2mHwMZ9a3ESvkhqZgViGklJbRj2mChepnELBfomYVg2nstua_uZC-OdL87h88b/s1600/kimia03.png

Pada anoda supaya Zn dapat berubah menjadi Zn2+ dan melepas elektron maka batang Zn dicelupkan dalam larutan elektrolit yang tidak bereaksi dengan Zn larutan elektrolitnya adalah ZnSO4. Sedangkan pada katoda digunakan batang Cu karena Cu tidak bereaksi dengan larutan CuSO4. Jadi fungsi batang Cu dapat digantikan dengan logam lain asal tidak bereaksi dengan larutan CuSO4. Elektron yang dihasilkan pada batang Zn dialirkan menuju batang Cu, sehingga Cu2+ dalam larutan CuSO4 akan berubah menjadi Cu setelah mengikat elektron yang dihasilan tersebut.
 Tanpa adanya sekat pemisah ion Cu2+ akan bereaksi langsung pada permukaan batang Zn sehingga aliran elektron melalui penghantar tidak terjadi dan saat batang Zn seluruhnya terlapisi Cu maka reaksi akan berhenti karena Cu tidak bereaksi dengan larutan elektrolit (ZnSO4  dan CuSO4). Dengan adanya sekat pemisah saat reaksi oksidasi berlangsung pada anoda konsentrasi ion Zn2+ makin lama makin besar akibatnya larutannya menjadi bermuatan positif dan menolak ion-ion Zn2+dari batang sehingga batang Zn tidak larut lagi menjadi ion Zn2+. Sedangkan saat reaksi reduksi pada katoda ion-ion Cu2+ diubah menjadi Cu. Oleh karena itu konsentrasi ion SO4-2 menjadi berlebih dan menyebabkan larutannya bermuatan negatif. Larutan yang bermuatan negatif akan menolak elektron dari batang sehingga tidak dapat diikat oleh ion Cu2+. Maka solusinya diperlukan sekat pemisah yang berpori, sekat ini dapat memisahkan larutan CuSO4 dari batang Zn dan pada saat yang sama dapat mengalirkan kelebihan kation (Zn2+) dari elektroda negatif ke elektroda positif dan anion  (SO4-2) dari elektroda positif ke elektroda negatif.

Pada batang/elektroda Zn reaksi yang berlangsung adalah reaksi oksidasi sehingga elektroda Zn sebagai elektroda negatif (anoda) :

Zn → Zn2+ + 2 e-

sedangkan pada batang Cu reaksi yang berlangsung adalah reaksi reduksi sehingga elektroda Cu sebagai elektroda positif (katoda) :
Cu2+ + 2e- → Cu
Reaksi totalnya ditulis :

Zn + Cu2+→ Zn2+ + Cu    atau  Zn + CuSO4 → ZnSO4 + Cu

Diagram (notasi) sel  tersebut adalah :

Zn  l  Zn2+ ll Cu2+  l Cu

Notasi tersebut menyatakan bahwa di anoda terjadi oksidasi Zn menjadi Zn2+, sedangkan di katoda terjadi reduksi ion Cu menjadi Cu2+.



http://mediabelajaronline.blogspot.com/2011/09/sel-volta-sel-galvani.html

Tidak ada komentar:

Posting Komentar